

European Journal of Cancer 39 (2003) 666-674

European Journal of Cancer

www.ejconline.com

Neovascularisation, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma

D. Ribatti^{a,*}, A. Vacca^b, R. Ria^b, A. Marzullo^c, B. Nico^a, R. Filotico^d, L. Roncali^a, F. Dammacco^b

^aDepartment of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
^bDepartment of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
^cDepartment of Pathology, University of Bari Medical School, Bari, Italy
^dDepartment of Dermatological Sciences, University of Bari Medical School, Bari, Italy

Received 9 November 2001; received in revised form 15 April 2002; accepted 8 May 2002

Abstract

Tissues from 92 proliferative lesions of the melanocytic lineage defining distinct steps in tumour progression were investigated immunohistochemically for changes in angiogenesis, expression of fibroblast growth factor-2 (FGF-2) and density of total mast cells (MCs) and MCs expressing tryptase, an angiogenic-inducing molecule. Although the microvessel number was low in common nevi, it increased significantly in nevi with architectural disorder with varying degrees of melanocytic atypia (termed 'nevi with ADMA'), and these changes persisted during tumour development. Progression of primary melanomas was accompanied by a high microvessel number, and the progression to metastases by another significant increase in the microvessel counts. Expression of FGF-2, evaluated as percentages of positive lesions and positive cells per lesion was upregulated in the course of progression. Changes in expression were associated with nevi with ADMA, tumour changeover, penetration of the tumour into the dermis and metastases. A high correlation was demonstrated in all groups of tissues between the microvessel counts, percentages of FGF-2-positive tumour cells, and both total metachromatic and tryptase-reactive MCs. These results suggest that angiogenesis in human melanoma increases with tumour progression and that FGF-2 secreted by tumour cells and tryptase secreted by host MCs cooperate in its induction.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Angiogenesis; Fibroblast growth factor-2; Mast cells; Melanoma; Tryptase

1. Introduction

In solid tumour growth, a specific critical turning point is the transition from the avascular to the vascular phase [1]. Having developed an intrinsic vascular network, the neoplastic mass is able to grow indefinitely both *in situ* and at distant sites (metastasis) in so far as an intrinsic vascular network enables its cells to enter the vascular bed and colonise other organs [2].

Tumour cells are surrounded by an infiltrate of inflammatory cells, such as lymphocytes, neutrophils, macrophages and mast cells (MCs). These cells communicate by

E-mail address: ribatti@anatomia.uniba.it (D. Ribatti).

a complex network of intercellular signalling pathways mediated by surface adhesion molecules, cytokines and their receptors [3]. The density of MCs is highly correlated with the extent of both normal and pathological angiogenesis, such as that in chronic inflammatory diseases and tumours (for review see Refs. [4,5]. MCderived heparin and histamine are angiogenic [6,32]. MCs also contain many other angiogenic factors and a variety of cytokines [38], such as transforming growth factor-beta, tumour necrosis factor-α [18], interleukin-8 (IL-8) [8], fibroblast growth factor-2 (FGF-2) [9] and vascular endothelial growth factor (VEGF) [10] implicated in normal, as well as tumour-associated neoangiogenesis. Blair and colleagues [11] have shown that tryptase released by MCs at an angiogenesis site may play an important role in neovascularisation. Direct

^{*} Corresponding author. Tel.: +39-080-5478-240; fax: +39-080-5478-310

addition of tryptase to microvascular endothelial cells cultured on Matrigel caused a pronounced increase of capillary growth, which was suppressed by specific tryptase inhibitors. Moreover, tryptase directly induced endothelial cell proliferation in a dose-dependent fashion. We have previously demonstrated that in multiple myeloma and B-cell non-Hodgkin's lymphoma there is a striking association between MC and microvessel counts, and both increase with malignancy [12,13]. Moreover, we have further demonstrated that angiogenesis in benign lymphadenopathies and in B-cell non-Hodgkin's lymphoma, measured as microvessel counts, is highly correlated with the total and MC tryptase-positive counts [14].

Human melanoma progresses through different steps: nevocellular nevi, dysplastic nevi, *in situ* melanoma, radial growth phase melanoma (Breslow index ≤ 0.75 mm), vertical growth phase melanoma (Breslow index > 0.75 mm) and metastatic melanoma. In agreement with progression, it acquires a rich vascular network [15,16], whereas an increasing proportion of tumour cells express the laminin receptor, which enables their adhesion to the vascular wall [17]. In the tumour, several angiogenic cytokines are expressed, including (FGF-2) [33,41], IL-3 and IL-8 [33,40] (VEGF) [39].

In this study, we correlate the extent of angiogenesis with the number of tumour cells reactive to FGF-2 and with MCs reactive with tryptase in human malignant melanoma.

2. Materials and methods

2.1. Tissues

Tissues were selected from the six clinical steps of melanoma progression described by Clark and colleagues in Ref. [19] (Table 1). Step 1 tissue included 14 common acquired nevi. Steps 2 and 3, which usually coexist, included 11 nevi with architectural disorder with varying degrees of melanocytic atypia (termed 'nevi with ADMA') according to Clark and colleagues [19], as revised by the National Institute of Health Consensus Conference on Early Melanoma [20]. Step 4 included 16 early primary melanomas, i.e. tumours in radial growth phase with limited (0.75 mm or less) Breslow vertical thickness [21]. Step 5 included 30 advanced primary melanomas, i.e. those in vertical growth phase with greater thickness. These tumours were subdivided into three groups according to their thickness ($\leq 0.75, 0.76$ – 1.5, greater than 1.5 mm); these groups define steps in progression in terms of its linear relationship with the competence for and the incidence of metastasis [19,21]. Step 6 included 21 synchronous metastases from regional subcutaneous/skin, regional lymph nodes, and distant visceral (jejunum) sites.

Table 1 Clinical and histological information on patients

Overall		92	
	Common nevi	14	
	Average age (year)	35	
	Men/women	6/8	
	Nevi with architectural disorder with		
	varying degrees of melanocytic atypia	11	
	Average age (year)	38	
	Men/woman	5/6	
	Primary skin melanomas ^a	46	
	Average age (year)	54	
	Men/women	22/24	
	Histological type ^b		
	SSM/LMM/NM/ALM	24/7/14/2	
	Clark level		
	I/II/III/IV/V	2/19/12/10/03	
	Tumour thickness (mm)		
	$\leq 0.75/0.76-1.5/ > 1.5$	16/12/18	
	Erosion or ulceration		
	Absent/present	36/10	
	Metastatic melanomas	21	
	Average age (year)	44	
	Men/women	8/13	
	Location		
	Subcutaneous/skin	13	
	Lymph node	7	
	Visceral site	1	

SSM, superficial spreading melanoma; LMM, lentigo malignant melanoma; NM, nodular melanoma; ALM, acral lentiginous melanoma.

Tissues samples were fixed in formalin and embedded in paraffin according to standard procedures.

2.2. Immunohistochemistry

Three murine monoclonal antibodies (MAbs) against the endothelial cell marker CD31 (MAb 1A10), FGF-2 (Mab MC-GF1, both from Serotec, Oxford, UK) and tryptase (MAb AA1, Dako, Glostrup, Denmark) were used. Briefly, 4 µm thick sections were collected on 3-amino-propyl-triethoxysilane coated slides, deparaffinised by the xylene–ethanol sequence, rehydrated in a graded ethanol scale and in Tris-buffered saline (TBS, pH 7.6), and incubated overnight at 4 °C with MAbs 1A10 (1:25 in TBS) and AA1 (1:1500 in TBS), after prior antigen retrieval by enzymatic digestion with Ficin (Sigma, St Louis, MO, USA) for 30 min at room temperature for tryptase, and in a pressure cooker for 90 s in ethylene diamine tetra acetic acid (EDTA) buffer, pH 8 for CD31. The immunoreaction was performed with alka-

^a All primary melanomas were stage I, according to the ITNM classification (International Union Against Cancer (UICC), 1987) [43]. They included 16 early and 30 advanced primary melanomas.

^b Established according to Clark and colleagues [19].

kine phosphatase anti-alkaline phosphatase (APAAP, Dako) and Fast Red as the chromogen for tryptase, and with the streptavidin–peroxidase complex (LSAB2, Dako) and 3,3′ diaminobenzidine tetrahydrochloride (Dako) 5% as the chromogen for CD31, followed by haematoxylin counterstaining. An unrelated monoclonal IgG1 produced by the P3X63/Ag8 mouse secretory myeloma replacing the MAbs served as negative controls [42].

2.3. Microvessel counts

These were simultaneously assessed without knowledge of the final pathological diagnosis by two investigators using a double-headed light microscope (Axioplan II, Zeiss, Oberkochen, Germany). Four to six 200× fields covering almost the whole of each of four sections per sample were examined with a 144-intersection point square reticulum (0.78 mm²) inserted in the eyepiece. Care was taken to select microvessels, i.e. capillaries and small venules, from all the CD31-stained vessels. They were identified as transversally sectioned tubes with a single layer of endothelial cells, either without or with a thin basement membrane. Each assessment was agreed upon in turn. Microvessels were counted with a planimetric point-count method with slight modifications [12], according to which only microvessels transversally cut occupying the reticulum points were counted. As the microvessel diameter was smaller than the distance between adjacent points, only one transversally sectioned microvessel could occupy a given point. Microvessels transversally sectioned outside the points and those longitudinally or tangentially sectioned were omitted. Therefore, it was sufficiently certain that a given microvessel was counted only once, even in the presence of several of its section planes. As almost the entire section was analysed per sample, and as transversally sectioned microvessels hit the intersection points randomly, the method allowed objective counts. Means ± 1 standard deviation (S.D.) and medians were determined for each section, sample and group of samples.

2.4. MC counts

MCs were highlighted in every second section adjacent to that stained for microvessels with 0.5% aqueous solution of toluidine blue (Merck, Darmstadt, Germany), counted in 6–8 250× fields, covering almost the whole section, inside a square reticulum (0.25 mm²), and calculated as means ± 1 S.D. and median for each group of samples. The MCs were stained with tryptase in every third section and counted as above.

2.5. Tumour cell counts

The percentage of tumour cells reactive with FGF-2 was assessed in every fourth section by counting $6-8250\times$ fields judged to be representative of the nevus or melanoma section viewed from several $100\times$ fields. A cut-off value of 5% stained cells per section was used to distinguish positive and negative samples. It was based on the finding that up to 5% tumour cells were stained in control sections.

2.6. Statistics

The significance of changes in the counts of microvessels, FGF-2-positive tumour cells and MCs (both total and tryptase-reactive MCs) was assessed with parametric (Fisher's test) and non-parametric (Kruskal–Wallis test) analysis of variance, followed by the Duncan (t), Bonferroni (t) and Wilcoxon tests to compare groups two by two. Correlations between counts were assessed with Pearson's (r) coefficient and simple regression analysis. The Chi-squared test was split into the linear and the residual component, according to Cochran. Data were computed with the Statistical Analysis Software (SAS, SAS Institute, Cary, NC, USA).

Table 2
Tissue density of microvessels and mast cells as a whole and tryptase-positive cell population

Number of	Common nevi $(n = 14)$	Nevi with ADMA $(n=11)$	Primary melanomas			Metastatic melanomas $(n=21)$
			$\leq 0.75 \text{ mm}$ $(n=16)$	0.76–1.5 mm (n = 12)	> 1.5 mm (n = 18)	meianomas (n – 21)
Microvessels	3.8±1.5	9±2.8*	11.4±3.1	10±3.6	10.3 ± 3.4	18.2±8.3**
(per 0.78 mm ²)	(4, 2-7)	(8, 6–15)	(10.5, 8-17)	(10, 6–16)	(10, 6-16)	(18, 7-33)
All mast cells	2.9 ± 1.5	$8.5 \pm 4.7*$	9.8 ± 4.3	$12.6 \pm 4.9 ***$	13.1 ± 5.2	$19.7 \pm 10.7**$
(per 0.25 mm ²)	(3, 1-6)	(8, 3-18)	(9.5, 5-20)	(11.5, 5-22)	(12, 7-25)	(20, 4-35)
Tryptase-positive	1.6 ± 1.2	4±2.3*	5.6 ± 3.1	8.5±4.6***	7.6 ± 3.8	$13.4 \pm 6.9**$
mast cells (per 0.25 mm ²)	(1, 1–4)	(4, 0–8)	(5, 0–12)	(6, 4–19)	(7, 1–16)	(16, 2–23)

Nevi with ADMA = nevi with architectural disorder with varying degrees of melanocytic atypia. Results are expressed as mean 1 standard deviation and (median, interval of variation). *P < 0.001, **P < 0.01 and ***P < 0.05 compared with the preceding group (parametric analysis of variance followed by Duncan t, Bonferroni t and Wilcoxon paired tests).

3. Results

3.1. Angiogenesis and mast cells

Table 2 shows the counts of microvessels and MCs as entire and tryptase-positive cell populations on adjacent tissue sections selected from the six clinical steps of melanocyte tumour progression. The comparison of microvessel counts between groups revealed statistically significant differences (Chi-square = 36.5, degrees of freedom (d.f.) = 2.8, P < 0.001, F = 37.7, P < 0.001). Significantly higher counts were shown in melanoma as a whole (13.0 ± 6.4) compared with nevi (6.1 ± 3.3) P < 0.001). Assessment by the progression steps showed a significant increase in the nevi with ADMA group over the common nevi group (P < 0.001), and a trend to increase (albeit, non significant) in early melanomas. Progression to advanced melanomas was associated with no significant changes. By contrast, metastases gave significantly higher counts (P < 0.01) when compared with advanced melanomas. In parallel, the MC counts varied significantly between groups (Chi-square = 38.8. d.f. = 3.1, P < 0.001; F = 41.2, P < 0.001). The intergroup comparisons showed that the counts of total and tryptasepositive MCs were significantly higher in melanoma as a whole $(14.3\pm6.4 \text{ and } 9.1\pm5.8, \text{ respectively})$ compared with nevi $(5.4\pm4.3 \text{ and } 2.7\pm2.1, \text{ respectively,}$ P < 0.001). Both counts also were significantly higher in nevi with ADMA over common nevi (P < 0.001), higher still in the primary melanomas (P < 0.05), and higher again in the metastatic melanomas (P < 0.01).

Fig. 1 shows the difference in both microvessel and MCs density between a common nevus (panels a and b) and a nevus with ADMA (panels c and d), and a metastatic melanoma (panels e and f). MCs were generally scattered throughout the neoplastic tissue and within the interstitial stroma where they rested near or around the blood capillaries.

The intragroup comparisons showed that microvessel counts were always significantly correlated with the MCs counts both as the total and tryptase-positive populations (Fig. 2).

3.2. Tumour immunoreactivity to FGF-2 and correlation with mast cell density

The percentages of lesions reactive with FGF-2 and the fraction of stained tumour cells within these lesions are illustrated in Figs. 3 and 4. The percentages increased in step with tumour progression (Chi-square total = 23.2, P < 0.001; Chi-square linear = 10.6, P < 0.001). Reactivity of nevi with ADMA was significantly more frequent (82%) than in common nevi (57%, 0.02 > P < 0.05), and transition between these two steps was marked by increasing stained cell percentages. Progression to the early and advanced melanomas was accompanied by

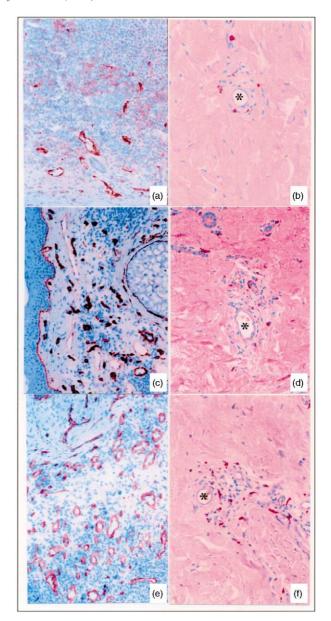


Fig. 1. Adjacent sections of common nevi (a, b), nevi with ADMA (c, d), and metastatic (e, f) melanomas stained with CD31 (a, c, e) for microvessels and with tryptase for mast cells (b, d, f). Note the progressive increase of microvessels and mast cells located around blood capillaries (asterisks) from common nevi to nevi with varying degrees of melanocytic atypia (ADMA) and from latter to metastatic melanomas.

high FGF-2 expression frequency, with approximately 90% of reactive lesions at each step. Progression was associated with an increase in the percentage of stained cells. Immunoreactivity was found in all metastases and occurred significantly more often than in the common nevi (0.01 > P < 0.05). Most metastases displayed the highest percentages of stained cells. When percentages of FGF-2-positive tumour cells were compared with the number of total and tryptase-positive MCs significant correlations were found in each step (Fig. 5).

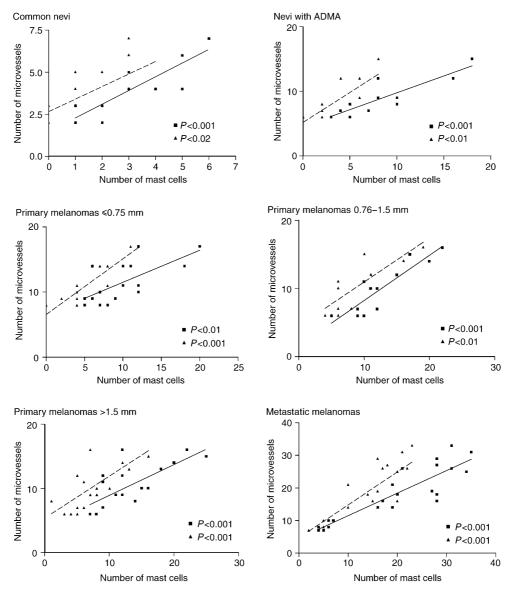


Fig. 2. Microvessel counts in comparison with total (*, continuous line) and tryptase-positive (*, sketched line) mast cell (MC) counts in tissues. Significance of the regression analysis was calculated using Pearsons' (r) test.

4. Discussion

This paper shows that angiogenesis in human malignant melanoma, measured as microvessel counts, is highly correlated with both the percentage of tumour cells reactive to FGF-2 and MC counts (as total cell and tryptase-positive cell counts), and that these parameters increase with tumour progression.

Two distinct types of human MCs have been described based on the protease composition of their secretory granules: MCs containing chymase, carboxypeptidase, cathepsin and tryptase and MCs containing tryptase only. Tryptase, a protease unique to the MC secretory granules, acts as a mitogen for fibroblasts, smooth muscle cells, and epithelial cells [22,23]. Blair and colleagues [11] have shown that MC-released tryptase plays an

important role in neovascularisation. Tryptase induces the formation of capillary structures by either directly acting on endothelial cells or by facilitating the early stages of angiogenesis. In fact, tryptase activates latent metalloproteinases and plasminogen activator [7], which degrade the extracellular matrix, a critical step in these stages [25]. MCs are strikingly associated with angiogenesis in tumours, namely haemangioma, carcinomas, lymphoma and multiple myeloma [4,5,9,12–14] where they are preferentially accumulated in the peripheral areas of the tumour, within the surrounding connective tissue, and rest near or around blood or lymphatic vessels [12]. MCs are recruited and activated via several factors secreted by tumour cells: the c-kit receptor [5], FGF-2, VEGF-A and platelet-derived endothelial cell growth factor (PD-ECGF), which are operative at

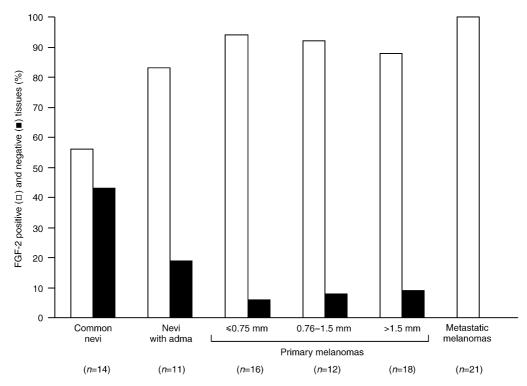


Fig. 3. Percentages of melanocytic lesions positive (open bars) and negative (shaded bars) for the FGF-2 expression at distinct steps in tumour progression. Number of lesions within parentheses.

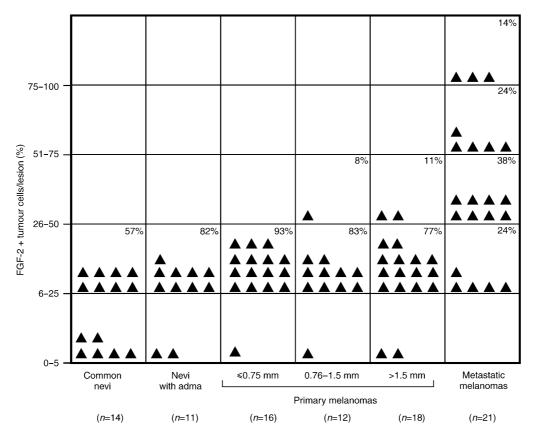


Fig. 4. Percentages of tumour cells expressing FGF-2 in various melanocytic lesions at distinct steps in tumour progression. Each triangle represents a single lesion. The percentages of cells stained per lesion were divided into five intensity groups (0–5, 6–25, 26–50, 51–75 and 76–100%). The percentages of lesions of each intensity group are reported.

picomolar concentrations [26]. The fact that MCs contribute to the induction of tumour angiogenesis stems from studies on MC-deficient mice, which display slow angiogenesis, and its restoration after local reconstitution of MCs [24, 27]. Moreover, in malignant breast lesions the number of MCs with tryptase activity was significantly higher than in benign lesions [28] and MCs derived from human renal tumour tissues contained tryptase [29].

FGF-2 is the most important autocrine growth factor in melanoma [18]. It is expressed by common nevus cells [30] and both primary and metastatic melanomas at the tumour invasion front, while tumour cells adjacent to the epidermis are largely devoid of this factor [31]. Its inhibition by antisense oligodeoxynucleotides leads to

inhibition of melanoma proliferation *in vitro* and *in vivo* [17]. Its production by melanoma also promotes angiogenesis via a paracrine mode, through the mitogenic effect on endothelial cells and fibroblasts [34]. In addition, the metastatic potential and invasiveness of human melanoma cells were found to be markedly increased by transduction with the *FGF-2* gene [33]. Ugurel and colleagues [30] found significantly elevated serum levels of FGF-2, angiogenin, VEGF and IL-8 in melanoma patients compared with healthy controls. Blood values of FGF-2, VEGF and IL-8 were positively correlated with the stage of disease and tumour burden and implied a poor overall survival and high probability of progression.

In line with other reports showing a close relationship between increased number of tryptase-positive MCs and

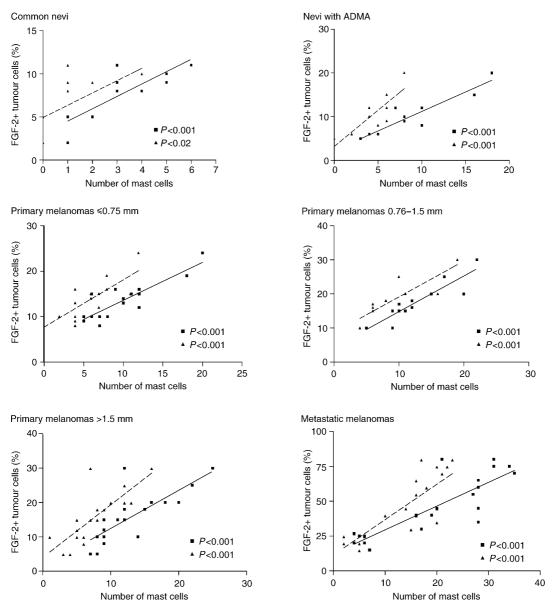


Fig. 5. Percentages of FGF-2-positive tumour cells in comparison with total (*, continous line) and tryptase-positive (*, sketched line), mast cell (MC) counts. Significance of the requenion analysis was calculated using Pearson's (r) test.

tumour progression [14,34,35], our data suggest that tryptase-positive MCs may contribute, at least partly, to the melanoma-associated angiogenesis. Furthermore, tumour-derived FGF-2 may have pleiotropic influences, first on tumour invasion, by elevating proteolytic enzymes [36], second on angiogenesis, by paracrine stimulation of endothelial cell growth [31], and third on recruitment and activation of MCs, which express the FGF-2 receptor [37]. MCs, in their turn, secrete FGF-2 stored in their secretory granules [9], which further stimulates endothelial cell growth and amplifies the FGF-2 paracrine stimulatory loop on angiogenesis.

Acknowledgements

Grant sponsors were Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.), Milan, Associazione Italiana per la Lotta al Neuroblastoma and Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Funds 60%), Rome, Italy.

References

- Folkman J. What is the evidence that tumours are angiogenesis dependent? J Natl Cancer Inst 1990, 82, 4–6.
- Fidler IJ. Regulation of neoplastic angiogenesis. J Natl Cancer Inst Monogr 2000, 28, 10–14.
- 3. Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. *Mol Medicine Today* 2000, **6**, 324–329.
- 4. Meininger CJ, Zetter BR. Mast cells and angiogenesis. *Semin Cancer Biol* 1992, **3**, 73–79.
- Norrby K, Woolley D. Role of mast cells in mitogenesis and angiogenesis in normal tissue and tumour tissue. *Adv Biosci* 1993, 89, 71–115.
- 6. Ribatti D, Roncali L, Nico B, Bertossi M. Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. *Acta Anat* 1987, **130**, 257–263.
- Stack MS, Johnson DA. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). *J Biol Chem* 1994, 269, 9416–9419.
- Grutzkau A, Kruger-Krasagakes S, Kogel H, Moller A, Lippert U, Henz BM. Detection of intracellular interleukin-8 in human mast cells: flow cytometry as a guide for immunoelectron microscopy. *J Histochem Cytochem* 1997, 45, 935–945.
- Qu Z, Leibler JM, Powers MR, et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 1995, 147, 547–564.
- Grutzkau A, Kruger-Krasagakes S, Baumesteir H, et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF 206. Mol Biol Cell 1998, 9, 875–884.
- Blair RJ, Meng H, Marchese MJ, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 1997, 99, 2691–2700.
- Ribatti D, Nico B, Vacca A, et al. Do mast cells help to induce angiogenesis in B-cell non-Hodgkin's lymphomas? Brit J Cancer 1998, 77, 1900–1906.
- 13. Ribatti D, Vacca A, Nico B, et al. Bone marrow angiogenesis and

- mast cell density increase simultaneously with progression of human multiple myeloma. *Brit J Cancer* 1999, **79**, 451–455.
- Ribatti D, Vacca A, Marzullo A, et al. Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas. Int J Cancer 2000, 85, 171–175.
- Barnhill RL, Fandrey K, Levy MA, Wihm MC, Hyman B. Angiogenesis and tumour progression of melanoma: quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. *Lab Invest* 1992, 67, 331–337.
- Ribatti D, Vacca A, Palma W, Lospalluti M, Dammacco F. Angiogenesis during tumour progression in human malignant melanoma. In Steiner R, Weisz PB, Langer R, eds. Angiogenesis: Key Principles—Science—Technology—Medicine. Basel, Birkhauser, 1992, 415–420.
- Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoural angiogenesis and tumour growth. *Nat Med* 1997, 3, 887–893.
- 18. Norrby K. TNF-alpha and de novo mammalian angiosenesis. *Merovasci Res*, 2000, **52**, 79–83.
- Clark Jr. WH, Elder DE, Guerry DJV, Epstein MN, Greene MH, Van Horn M. A study of tumour progression: the precursor lesions of superficial spreading and nodular melanoma. *Hum Pathol* 1984, 15, 1146–1165.
- NIH Consensus Conference. Diagnosis and treatment of early melanoma. *JAMA* 1992, 268, 1314–1319.
- Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. *Ann Surg* 1970, 172, 902–908.
- Brown JK, Jones CA, Tyler CL, Ruoss SJ, Hartmann T, Caughey GH. Tryptase-induced mitogenesis in airway smooth muscle cells. *Chest* 1995, 107, 95S–96S.
- Cairns JA, Walls AF. Mast cell tryptase is a mitogen for epithelial cells: stimulation of IL-8 production and intercellular adhesion molecule-1 expression. *J Immunol* 1996, 157, 275–283.
- Starkey JR, Crowle PK, Taubenberg S. Mast cell-deficient W/Wv mice exhibit a decreased rate of tumour angiogenesis. *Int J Can*cer 1988, 42, 48–52.
- Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumour invasion. *Physiol Rev* 1993, 73, 161–195.
- Gruber BL, Marchese MJ, Kew R. Angiogenic factors stimulate mast cell migration. *Blood* 1995, 86, 2488–2493.
- Toth T, Toth-Jakatics R, Jimi S, Takebayashi S, Kawamoto N. Cutaneous malignant melanoma: correlation between neovascularization and peritumour accumulation of mast cells over-expressing vascular endothelial growth factor. *Hum Pathol* 2000, 31, 955–960.
- Kankunnen JP, Harvima IT, Naukkarinen A. Quantitative analysis of tryptase and chimase containing mast cells in benign and malignant breast lesions. *Int J Cancer* 1997, 72, 385–388.
- Beil WJ, Fureder W, Wiener H, Grosschmidt K, Maier U, Schedle A, Bankl HC, Lechner K, Valent P. Phenotypic and functional characterization of mast cells derived from renal tumour tissues. *Exp Hematol* 1998, 26, 158–169.
- Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumour progression and survival. *J Clin Oncol* 2000, 19, 577–583.
- 31. Shih IM, Herlyn M. Autocrine and paracrine roles for growth factors in melanoma. *In Vivo* 1994, **8**, 113–124.
- Sorbo J, Jakobbson A, Norrby K. Mast cell histamine is angiogenic through receptors for histamine 1 and histamine 2. Int J Exp Pathol 1994, 75, 43–50.
- Meier F, Nesbit M, Hsu MY, et al. Human melanoma progression in skin reconstructs: biological significance of bFGF. Am J Pathol 2000, 156, 193–200.

- Duncan LM, Richards LA, Mihm MC. Increased mast cell density in invasive melanoma. J Cutan Pathol 1998, 25, 11–15.
- Ueda M, Funasaka Y, Ichihashi M, Mishima Y. Stable and strong expression of basic fibroblast growth factor in naevus cell naevis contrast with aberrant expression in melanoma. *Br J Dermatol* 1994, 130, 320–324.
- Schadendorf D, Kohlmus C, Gawlik C, Suter L, Czarnetzki BM. Mast cells in melanocytic tumours. *Arch Dermatol Res* 1995, 287, 452–456.
- 37. Akimoto S, Ishikawa O, Iijima C, Miyachi Y. Expression of basic fibroblast growth factor and its receptor by fibroblasts, macrophages and mast cells in hypertrophic scar. *Eur J Dermatol* 1999, **9**, 357–362.
- 38. Moller A, Henz BM, Grutzkau A, *et al.* Comparative cytokine gene expression: regulation and release by human mast cells. *Immunology* 1998, **93**, 289–295.
- 39. Bayer-Garner IB, Hough AJ, Smoller BR. Vascular endothelial growth factor expression in malignant melanoma:

- prognostic versus diagnostic uselfuness. *Mod Pathol* 2000, **12**, 770–774.
- Reed JA, Mc Nutt NS, Bogdany JK, Albino AP. Expression of the mast cell growth factor interleukin-3 in melanocytic lesions correlates with an increased number of mast cells in the perilesional stroma: implications for the melanoma progression. J Cutan Pathol 1996, 23, 495–505.
- Schulze-Osthoff K, Risau W, Vollmer E, Sorg C. In situ detection of basic fibroblast growth factor by highly specific antibodies. *Am J Pathol* 1990, 137, 85–92.
- Vacca A, Ribatti D, Roncali L, et al. Melanocyte tumour progression is associated with changes in angiogenesis and expression of the 67-kilodalton laminin receptor. Cancer 1993, 72, 455–461.
- Ketcham AS, Moffat FL, Balch CM. Classification and staging. In Balch CM, Houghton AM, Sober AJ, Milton GW, Soong SJ, eds. *Cutaneous melanoma*, 2nd Edn. Philadelphia, J.P. Lippincott, 1992, 213–220.